programing

Python에서 트리를 구현하려면 어떻게 해야 하나요?

goodjava 2022. 10. 23. 21:26

Python에서 트리를 구현하려면 어떻게 해야 하나요?

나는 일반 트리를 만들려고 한다.

Python에 구현하기 위한 내장 데이터 구조가 있습니까?

anytree(저작자)를 추천합니다.

예:

from anytree import Node, RenderTree

udo = Node("Udo")
marc = Node("Marc", parent=udo)
lian = Node("Lian", parent=marc)
dan = Node("Dan", parent=udo)
jet = Node("Jet", parent=dan)
jan = Node("Jan", parent=dan)
joe = Node("Joe", parent=dan)

print(udo)
Node('/Udo')
print(joe)
Node('/Udo/Dan/Joe')

for pre, fill, node in RenderTree(udo):
    print("%s%s" % (pre, node.name))
Udo
├── Marc
│   └── Lian
└── Dan
    ├── Jet
    ├── Jan
    └── Joe

print(dan.children)
(Node('/Udo/Dan/Jet'), Node('/Udo/Dan/Jan'), Node('/Udo/Dan/Joe'))

anytree에는 다음과 같은 강력한 API도 있습니다.

  • 단순 트리 생성
  • 단순 트리 수정
  • 프리오더 트리 반복
  • 사후 순서 트리 반복
  • 상대 노드 경로 및 절대 노드 경로 해결
  • 한 노드에서 다른 노드로 이동합니다.
  • 트리 렌더링(위의 예 참조)
  • 노드 연결/연결 해제

Python은 Java만큼 광범위한 "빌트인" 데이터 구조를 가지고 있지 않다.그러나 Python은 동적이기 때문에 일반 트리는 쉽게 만들 수 있습니다.예를 들어 바이너리 트리는 다음과 같습니다.

class Tree:
    def __init__(self):
        self.left = None
        self.right = None
        self.data = None

다음과 같이 사용할 수 있습니다.

root = Tree()
root.data = "root"
root.left = Tree()
root.left.data = "left"
root.right = Tree()
root.right.data = "right"

노드당 임의의 수의 자녀 수가 필요한 경우 자녀 목록을 사용합니다.

class Tree:
    def __init__(self, data):
        self.children = []
        self.data = data

left = Tree("left")
middle = Tree("middle")
right = Tree("right")
root = Tree("root")
root.children = [left, middle, right]

범용 트리는 0개 이상의 하위 노드를 가진 노드이며, 각 노드에는 적절한(트리) 노드가 있습니다.바이너리 트리와는 다른 데이터 구조입니다.다만, 양쪽 모두 몇개의 용어를 공유하고 있습니다.

Python에는 범용 트리에 대한 데이터 구조가 내장되어 있지 않지만 클래스로 쉽게 구현됩니다.

class Tree(object):
    "Generic tree node."
    def __init__(self, name='root', children=None):
        self.name = name
        self.children = []
        if children is not None:
            for child in children:
                self.add_child(child)
    def __repr__(self):
        return self.name
    def add_child(self, node):
        assert isinstance(node, Tree)
        self.children.append(node)
#    *
#   /|\
#  1 2 +
#     / \
#    3   4
t = Tree('*', [Tree('1'),
               Tree('2'),
               Tree('+', [Tree('3'),
                          Tree('4')])])

다음 작업을 수행할 수 있습니다.

from collections import defaultdict
def tree(): return defaultdict(tree)
users = tree()
users['harold']['username'] = 'hrldcpr'
users['handler']['username'] = 'matthandlersux'

여기 제시된 바와 같이 https://gist.github.com/2012250

class Node:
    """
    Class Node
    """
    def __init__(self, value):
        self.left = None
        self.data = value
        self.right = None

class Tree:
    """
    Class tree will provide a tree as well as utility functions.
    """

    def createNode(self, data):
        """
        Utility function to create a node.
        """
        return Node(data)

    def insert(self, node , data):
        """
        Insert function will insert a node into tree.
        Duplicate keys are not allowed.
        """
        #if tree is empty , return a root node
        if node is None:
            return self.createNode(data)
        # if data is smaller than parent , insert it into left side
        if data < node.data:
            node.left = self.insert(node.left, data)
        elif data > node.data:
            node.right = self.insert(node.right, data)

        return node


    def search(self, node, data):
        """
        Search function will search a node into tree.
        """
        # if root is None or root is the search data.
        if node is None or node.data == data:
            return node

        if node.data < data:
            return self.search(node.right, data)
        else:
            return self.search(node.left, data)



    def deleteNode(self,node,data):
        """
        Delete function will delete a node into tree.
        Not complete , may need some more scenarion that we can handle
        Now it is handling only leaf.
        """

        # Check if tree is empty.
        if node is None:
            return None

        # searching key into BST.
        if data < node.data:
            node.left = self.deleteNode(node.left, data)
        elif data > node.data:
            node.right = self.deleteNode(node.right, data)
        else: # reach to the node that need to delete from BST.
            if node.left is None and node.right is None:
                del node
            if node.left == None:
                temp = node.right
                del node
                return  temp
            elif node.right == None:
                temp = node.left
                del node
                return temp

        return node

    def traverseInorder(self, root):
        """
        traverse function will print all the node in the tree.
        """
        if root is not None:
            self.traverseInorder(root.left)
            print(root.data)
            self.traverseInorder(root.right)

    def traversePreorder(self, root):
        """
        traverse function will print all the node in the tree.
        """
        if root is not None:
            print(root.data)
            self.traversePreorder(root.left)
            self.traversePreorder(root.right)

    def traversePostorder(self, root):
        """
        traverse function will print all the node in the tree.
        """
        if root is not None:
            self.traversePostorder(root.left)
            self.traversePostorder(root.right)
            print(root.data)


def main():
    root = None
    tree = Tree()
    root = tree.insert(root, 10)
    print(root)
    tree.insert(root, 20)
    tree.insert(root, 30)
    tree.insert(root, 40)
    tree.insert(root, 70)
    tree.insert(root, 60)
    tree.insert(root, 80)

    print("Traverse Inorder")
    tree.traverseInorder(root)

    print("Traverse Preorder")
    tree.traversePreorder(root)

    print("Traverse Postorder")
    tree.traversePostorder(root)


if __name__ == "__main__":
    main()

트리는 내장되어 있지 않지만 노드 유형을 목록에서 하위 분류하고 통과 메서드를 작성하면 쉽게 만들 수 있습니다.이렇게 해주면 이등분할이 도움이 될 것 같아요.

또한 PyPi에는 브라우즈할 수 있는 구현이 많이 있습니다.

내 기억이 맞다면 Python standard lib는 와 같은 이유로 트리 데이터 구조를 포함하지 않습니다.NET Base Class Library는 그렇지 않습니다.메모리의 인접성이 감소하여 캐시 누락이 증가합니다.최신 프로세서에서는 대개 대용량 메모리 청크를 캐시에 넣는 것이 더 빠르며, "포인터 리치" 데이터 구조는 이점을 무효화시킵니다.

가 있는 했습니다.{child:parent}를 노드의 0을 사용하다

tree={1:0, 2:0, 3:1, 4:2, 5:3}

이 구조 덕분에 노드에서 루트로 가는 경로를 따라 위쪽으로 쉽게 이동할 수 있었고, 이는 작업 중인 문제와 관련이 있었습니다.

Greg Hewgill의 답변은 훌륭하지만 수준별로 더 많은 노드가 필요한 경우 list|dictionary를 사용하여 노드를 작성할 수 있습니다.그런 다음 이름 또는 순서(예: ID)로 액세스하기 위한 방법을 사용합니다.

class node(object):
    def __init__(self):
        self.name=None
        self.node=[]
        self.otherInfo = None
        self.prev=None
    def nex(self,child):
        "Gets a node by number"
        return self.node[child]
    def prev(self):
        return self.prev
    def goto(self,data):
        "Gets the node by name"
        for child in range(0,len(self.node)):
            if(self.node[child].name==data):
                return self.node[child]
    def add(self):
        node1=node()
        self.node.append(node1)
        node1.prev=self
        return node1

이제 루트를 만들고 구축하기만 하면 됩니다. 예:

tree=node()  #create a node
tree.name="root" #name it root
tree.otherInfo="blue" #or what ever 
tree=tree.add() #add a node to the root
tree.name="node1" #name it

    root
   /
child1

tree=tree.add()
tree.name="grandchild1"

       root
      /
   child1
   /
grandchild1

tree=tree.prev()
tree=tree.add()
tree.name="gchild2"

          root
           /
        child1
        /    \
grandchild1 gchild2

tree=tree.prev()
tree=tree.prev()
tree=tree.add()
tree=tree.name="child2"

              root
             /   \
        child1  child2
       /     \
grandchild1 gchild2


tree=tree.prev()
tree=tree.goto("child1") or tree=tree.nex(0)
tree.name="changed"

              root
              /   \
         changed   child2
        /      \
  grandchild1  gchild2

이 정도면 이 일을 어떻게 할 수 있는지 알아내기 시작할 수 있을 거야

class Tree(dict):
    """A tree implementation using python's autovivification feature."""
    def __missing__(self, key):
        value = self[key] = type(self)()
        return value

    #cast a (nested) dict to a (nested) Tree class
    def __init__(self, data={}):
        for k, data in data.items():
            if isinstance(data, dict):
                self[k] = type(self)(data)
            else:
                self[k] = data

는 사전으로 기능하지만 원하는 수의 중첩된 딕트를 제공합니다.다음을 시도해 보십시오.

your_tree = Tree()

your_tree['a']['1']['x']  = '@'
your_tree['a']['1']['y']  = '#'
your_tree['a']['2']['x']  = '$'
your_tree['a']['3']       = '%'
your_tree['b']            = '*'

네스트된 딕트...를 전달합니다.정말 나무 역할을 하는 것 같아요.

{'a': {'1': {'x': '@', 'y': '#'}, '2': {'x': '$'}, '3': '%'}, 'b': '*'}

...이미 dict가 있는 경우 각 레벨을 트리로 캐스트합니다.

d = {'foo': {'amy': {'what': 'runs'} } }
tree = Tree(d)

print(d['foo']['amy']['what']) # returns 'runs'
d['foo']['amy']['when'] = 'now' # add new branch

이렇게 하면 원하는 대로 각 딕트 수준을 편집/추가/삭제할 수 있습니다.트래버설 등에 대한 모든 dict 메서드는 여전히 적용됩니다.

보다 간단한 방법이 필요한 경우 트리는 재귀적으로 중첩된 목록일 뿐입니다(세트는 해시할 수 없으므로).

[root, [child_1, [[child_11, []], [child_12, []]], [child_2, []]]]

서 각 입니다.[ object, [children] ]
이 한.[ object, [] ]

그러나 메서드가 있는 클래스가 필요한 경우 임의의 트리를 사용할 수 있습니다.

네스트된 딕트를 사용하여 트리를 구현했습니다.이것은 매우 간단하게 실행할 수 있고, 꽤 큰 데이터 세트에서도 사용할 수 있었습니다.아래 샘플을 올렸습니다. 자세한 내용은 구글 코드에서 확인하실 수 있습니다.

  def addBallotToTree(self, tree, ballotIndex, ballot=""):
    """Add one ballot to the tree.

    The root of the tree is a dictionary that has as keys the indicies of all 
    continuing and winning candidates.  For each candidate, the value is also
    a dictionary, and the keys of that dictionary include "n" and "bi".
    tree[c]["n"] is the number of ballots that rank candidate c first.
    tree[c]["bi"] is a list of ballot indices where the ballots rank c first.

    If candidate c is a winning candidate, then that portion of the tree is
    expanded to indicate the breakdown of the subsequently ranked candidates.
    In this situation, additional keys are added to the tree[c] dictionary
    corresponding to subsequently ranked candidates.
    tree[c]["n"] is the number of ballots that rank candidate c first.
    tree[c]["bi"] is a list of ballot indices where the ballots rank c first.
    tree[c][d]["n"] is the number of ballots that rank c first and d second.
    tree[c][d]["bi"] is a list of the corresponding ballot indices.

    Where the second ranked candidates is also a winner, then the tree is 
    expanded to the next level.  

    Losing candidates are ignored and treated as if they do not appear on the 
    ballots.  For example, tree[c][d]["n"] is the total number of ballots
    where candidate c is the first non-losing candidate, c is a winner, and
    d is the next non-losing candidate.  This will include the following
    ballots, where x represents a losing candidate:
    [c d]
    [x c d]
    [c x d]
    [x c x x d]

    During the count, the tree is dynamically updated as candidates change
    their status.  The parameter "tree" to this method may be the root of the
    tree or may be a sub-tree.
    """

    if ballot == "":
      # Add the complete ballot to the tree
      weight, ballot = self.b.getWeightedBallot(ballotIndex)
    else:
      # When ballot is not "", we are adding a truncated ballot to the tree,
      # because a higher-ranked candidate is a winner.
      weight = self.b.getWeight(ballotIndex)

    # Get the top choice among candidates still in the running
    # Note that we can't use Ballots.getTopChoiceFromWeightedBallot since
    # we are looking for the top choice over a truncated ballot.
    for c in ballot:
      if c in self.continuing | self.winners:
        break # c is the top choice so stop
    else:
      c = None # no candidates left on this ballot

    if c is None:
      # This will happen if the ballot contains only winning and losing
      # candidates.  The ballot index will not need to be transferred
      # again so it can be thrown away.
      return

    # Create space if necessary.
    if not tree.has_key(c):
      tree[c] = {}
      tree[c]["n"] = 0
      tree[c]["bi"] = []

    tree[c]["n"] += weight

    if c in self.winners:
      # Because candidate is a winner, a portion of the ballot goes to
      # the next candidate.  Pass on a truncated ballot so that the same
      # candidate doesn't get counted twice.
      i = ballot.index(c)
      ballot2 = ballot[i+1:]
      self.addBallotToTree(tree[c], ballotIndex, ballot2)
    else:
      # Candidate is in continuing so we stop here.
      tree[c]["bi"].append(ballotIndex)

networkx 라이브러리를 이미 사용하고 있는 경우 이를 사용하여 트리를 구현할 수 있습니다.

NetworkX는 복잡한 네트워크의 구조, 역학 및 기능을 생성, 조작 및 연구하기 위한 Python 패키지입니다.

'트리'는 연결된 비순환 그래프(일반적으로 루트)의 다른 용어이며, NetworkX에서는 이러한 그래프를 'arborescences'라고 부릅니다.

각 형제에게 고유한 순위가 있으며 일반적으로 노드에 레이블을 지정하여 실행되는 평면 트리(일명 순서 트리)를 구현할 수 있습니다.

단, 그래프 언어는 트리 언어와는 달라 보이고, 나무 원반을 '루팅'하는 방법은 보통 방향 그래프를 사용하여 이루어지기 때문에 매우 멋진 기능과 대응하는 시각화를 사용할 수 있지만 networkx를 아직 사용하지 않는 경우에는 이상적인 선택이 아닐 수 있습니다.

트리의 작성 예:

import networkx as nx
G = nx.Graph()
G.add_edge('A', 'B')
G.add_edge('B', 'C')
G.add_edge('B', 'D')
G.add_edge('A', 'E')
G.add_edge('E', 'F')

라이브러리를 사용하면 각 노드가 해시 가능한 개체가 될 수 있으며 각 노드의 자식 수에 제약이 없습니다.

Python 3 트리의 실장을 제 사이트 https://web.archive.org/web/20120723175438/www.quesucede.com/page/show/id/python_3_tree_implementation에 공개했습니다.

코드는 다음과 같습니다.

import uuid

def sanitize_id(id):
    return id.strip().replace(" ", "")

(_ADD, _DELETE, _INSERT) = range(3)
(_ROOT, _DEPTH, _WIDTH) = range(3)

class Node:

    def __init__(self, name, identifier=None, expanded=True):
        self.__identifier = (str(uuid.uuid1()) if identifier is None else
                sanitize_id(str(identifier)))
        self.name = name
        self.expanded = expanded
        self.__bpointer = None
        self.__fpointer = []

    @property
    def identifier(self):
        return self.__identifier

    @property
    def bpointer(self):
        return self.__bpointer

    @bpointer.setter
    def bpointer(self, value):
        if value is not None:
            self.__bpointer = sanitize_id(value)

    @property
    def fpointer(self):
        return self.__fpointer

    def update_fpointer(self, identifier, mode=_ADD):
        if mode is _ADD:
            self.__fpointer.append(sanitize_id(identifier))
        elif mode is _DELETE:
            self.__fpointer.remove(sanitize_id(identifier))
        elif mode is _INSERT:
            self.__fpointer = [sanitize_id(identifier)]

class Tree:

    def __init__(self):
        self.nodes = []

    def get_index(self, position):
        for index, node in enumerate(self.nodes):
            if node.identifier == position:
                break
        return index

    def create_node(self, name, identifier=None, parent=None):

        node = Node(name, identifier)
        self.nodes.append(node)
        self.__update_fpointer(parent, node.identifier, _ADD)
        node.bpointer = parent
        return node

    def show(self, position, level=_ROOT):
        queue = self[position].fpointer
        if level == _ROOT:
            print("{0} [{1}]".format(self[position].name,
                                     self[position].identifier))
        else:
            print("\t"*level, "{0} [{1}]".format(self[position].name,
                                                 self[position].identifier))
        if self[position].expanded:
            level += 1
            for element in queue:
                self.show(element, level)  # recursive call

    def expand_tree(self, position, mode=_DEPTH):
        # Python generator. Loosly based on an algorithm from 'Essential LISP' by
        # John R. Anderson, Albert T. Corbett, and Brian J. Reiser, page 239-241
        yield position
        queue = self[position].fpointer
        while queue:
            yield queue[0]
            expansion = self[queue[0]].fpointer
            if mode is _DEPTH:
                queue = expansion + queue[1:]  # depth-first
            elif mode is _WIDTH:
                queue = queue[1:] + expansion  # width-first

    def is_branch(self, position):
        return self[position].fpointer

    def __update_fpointer(self, position, identifier, mode):
        if position is None:
            return
        else:
            self[position].update_fpointer(identifier, mode)

    def __update_bpointer(self, position, identifier):
        self[position].bpointer = identifier

    def __getitem__(self, key):
        return self.nodes[self.get_index(key)]

    def __setitem__(self, key, item):
        self.nodes[self.get_index(key)] = item

    def __len__(self):
        return len(self.nodes)

    def __contains__(self, identifier):
        return [node.identifier for node in self.nodes
                if node.identifier is identifier]

if __name__ == "__main__":

    tree = Tree()
    tree.create_node("Harry", "harry")  # root node
    tree.create_node("Jane", "jane", parent = "harry")
    tree.create_node("Bill", "bill", parent = "harry")
    tree.create_node("Joe", "joe", parent = "jane")
    tree.create_node("Diane", "diane", parent = "jane")
    tree.create_node("George", "george", parent = "diane")
    tree.create_node("Mary", "mary", parent = "diane")
    tree.create_node("Jill", "jill", parent = "george")
    tree.create_node("Carol", "carol", parent = "jill")
    tree.create_node("Grace", "grace", parent = "bill")
    tree.create_node("Mark", "mark", parent = "jane")

    print("="*80)
    tree.show("harry")
    print("="*80)
    for node in tree.expand_tree("harry", mode=_WIDTH):
        print(node)
    print("="*80)

안녕하세요, 한번 시도해 보세요(저작자입니다).

패키지는 anytree 패키지의 방향으로 진행되지만 포커스는 조금 다릅니다.큰 나무(10만개 이상)의 퍼포먼스가 향상되어 필터 메커니즘이 유효하게 되어 있는 반복기에 대응하고 있습니다.

>>>from itertree import *
>>>root=iTree('root')

>>># add some children:
>>>root.append(iTree('Africa',data={'surface':30200000,'inhabitants':1257000000}))
>>>root.append(iTree('Asia', data={'surface': 44600000, 'inhabitants': 4000000000}))
>>>root.append(iTree('America', data={'surface': 42549000, 'inhabitants': 1009000000}))
>>>root.append(iTree('Australia&Oceania', data={'surface': 8600000, 'inhabitants': 36000000}))
>>>root.append(iTree('Europe', data={'surface': 10523000 , 'inhabitants': 746000000}))
>>># you might use __iadd__ operator for adding too:
>>>root+=iTree('Antarktika', data={'surface': 14000000, 'inhabitants': 1100})

>>># for building next level we select per index:
>>>root[0]+=iTree('Ghana',data={'surface':238537,'inhabitants':30950000})
>>>root[0]+=iTree('Niger', data={'surface': 1267000, 'inhabitants': 23300000})
>>>root[1]+=iTree('China', data={'surface': 9596961, 'inhabitants': 1411780000})
>>>root[1]+=iTree('India', data={'surface': 3287263, 'inhabitants': 1380004000})
>>>root[2]+=iTree('Canada', data={'type': 'country', 'surface': 9984670, 'inhabitants': 38008005})    
>>>root[2]+=iTree('Mexico', data={'surface': 1972550, 'inhabitants': 127600000 })
>>># extend multiple items:
>>>root[3].extend([iTree('Australia', data={'surface': 7688287, 'inhabitants': 25700000 }), iTree('New Zealand', data={'surface': 269652, 'inhabitants': 4900000 })])
>>>root[4]+=iTree('France', data={'surface': 632733, 'inhabitants': 67400000 }))
>>># select parent per TagIdx - remember in itertree you might put items with same tag multiple times:
>>>root[TagIdx('Europe'0)]+=iTree('Finland', data={'surface': 338465, 'inhabitants': 5536146 })

생성된 트리는 다음과 같이 렌더링할 수 있습니다.

>>>root.render()
iTree('root')
     └──iTree('Africa', data=iTData({'surface': 30200000, 'inhabitants': 1257000000}))
         └──iTree('Ghana', data=iTData({'surface': 238537, 'inhabitants': 30950000}))
         └──iTree('Niger', data=iTData({'surface': 1267000, 'inhabitants': 23300000}))
     └──iTree('Asia', data=iTData({'surface': 44600000, 'inhabitants': 4000000000}))
         └──iTree('China', data=iTData({'surface': 9596961,  'inhabitants': 1411780000}))
         └──iTree('India', data=iTData({'surface': 3287263, 'inhabitants': 1380004000}))
     └──iTree('America', data=iTData({'surface': 42549000, 'inhabitants': 1009000000}))
         └──iTree('Canada', data=iTData({'surface': 9984670, 'inhabitants': 38008005}))
         └──iTree('Mexico', data=iTData({'surface': 1972550, 'inhabitants': 127600000}))
     └──iTree('Australia&Oceania', data=iTData({'surface': 8600000, 'inhabitants': 36000000}))
         └──iTree('Australia', data=iTData({'surface': 7688287, 'inhabitants': 25700000}))
         └──iTree('New Zealand', data=iTData({'surface': 269652, 'inhabitants': 4900000}))
     └──iTree('Europe', data=iTData({'surface': 10523000, 'inhabitants': 746000000}))
         └──iTree('France', data=iTData({'surface': 632733, 'inhabitants': 67400000}))
         └──iTree('Finland', data=iTData({'surface': 338465, 'inhabitants': 5536146}))
     └──iTree('Antarktika', data=iTData({'surface': 14000000, 'inhabitants': 1100}))

예: 필터링은 다음과 같이 수행할 수 있습니다.

>>>item_filter = Filter.iTFilterData(data_key='inhabitants', data_value=iTInterval(0, 20000000))
>>>iterator=root.iter_all(item_filter=item_filter)
>>>for i in iterator:
>>>    print(i)
iTree("'New Zealand'", data=iTData({'surface': 269652, 'inhabitants': 4900000}), subtree=[])
iTree("'Finland'", data=iTData({'surface': 338465, 'inhabitants': 5536146}), subtree=[])
iTree("'Antarktika'", data=iTData({'surface': 14000000, 'inhabitants': 1100}), subtree=[])

브루노의 답변을 바탕으로 한 또 다른 트리 구현:

class Node:
    def __init__(self):
        self.name: str = ''
        self.children: List[Node] = []
        self.parent: Node = self

    def __getitem__(self, i: int) -> 'Node':
        return self.children[i]

    def add_child(self):
        child = Node()
        self.children.append(child)
        child.parent = self
        return child

    def __str__(self) -> str:
        def _get_character(x, left, right) -> str:
            if x < left:
                return '/'
            elif x >= right:
                return '\\'
            else:
                return '|'

        if len(self.children):
            children_lines: Sequence[List[str]] = list(map(lambda child: str(child).split('\n'), self.children))
            widths: Sequence[int] = list(map(lambda child_lines: len(child_lines[0]), children_lines))
            max_height: int = max(map(len, children_lines))
            total_width: int = sum(widths) + len(widths) - 1
            left: int = (total_width - len(self.name) + 1) // 2
            right: int = left + len(self.name)

            return '\n'.join((
                self.name.center(total_width),
                ' '.join(map(lambda width, position: _get_character(position - width // 2, left, right).center(width),
                             widths, accumulate(widths, add))),
                *map(
                    lambda row: ' '.join(map(
                        lambda child_lines: child_lines[row] if row < len(child_lines) else ' ' * len(child_lines[0]),
                        children_lines)),
                    range(max_height))))
        else:
            return self.name

또, 사용 방법의 예도 다음에 나타냅니다.

tree = Node()
tree.name = 'Root node'
tree.add_child()
tree[0].name = 'Child node 0'
tree.add_child()
tree[1].name = 'Child node 1'
tree.add_child()
tree[2].name = 'Child node 2'
tree[1].add_child()
tree[1][0].name = 'Grandchild 1.0'
tree[2].add_child()
tree[2][0].name = 'Grandchild 2.0'
tree[2].add_child()
tree[2][1].name = 'Grandchild 2.1'
print(tree)

출력 대상:

루트 노드/             /                      \하위 노드 0 하위 노드 1 하위 노드 2|              /              \손자1.0 손자2.0 손자2.1

트리 데이터 구조를 작성하려면 먼저 treeElement 개체를 작성해야 합니다.treeElement 개체를 만들면 트리의 동작을 결정할 수 있습니다.

이를 수행하려면 TreeElement 클래스가 필요합니다.

class TreeElement (object):

def __init__(self):
    self.elementName = None
    self.element = []
    self.previous = None
    self.elementScore = None
    self.elementParent = None
    self.elementPath = []
    self.treeLevel = 0

def goto(self, data):
    for child in range(0, len(self.element)):
        if (self.element[child].elementName == data):
            return self.element[child]

def add(self):

    single_element = TreeElement()
    single_element.elementName = self.elementName
    single_element.previous = self.elementParent
    single_element.elementScore = self.elementScore
    single_element.elementPath = self.elementPath
    single_element.treeLevel = self.treeLevel

    self.element.append(single_element)

    return single_element

이 요소를 사용하여 트리를 만들어야 합니다.이 예에서는 A* 트리를 사용하고 있습니다.

class AStarAgent(Agent):
# Initialization Function: Called one time when the game starts
def registerInitialState(self, state):
    return;

# GetAction Function: Called with every frame
def getAction(self, state):

    # Sorting function for the queue
    def sortByHeuristic(each_element):

        if each_element.elementScore:
            individual_score = each_element.elementScore[0][0] + each_element.treeLevel
        else:
            individual_score = admissibleHeuristic(each_element)

        return individual_score

    # check the game is over or not
    if state.isWin():
        print('Job is done')
        return Directions.STOP
    elif state.isLose():
        print('you lost')
        return Directions.STOP

    # Create empty list for the next states
    astar_queue = []
    astar_leaf_queue = []
    astar_tree_level = 0
    parent_tree_level = 0

    # Create Tree from the give node element
    astar_tree = TreeElement()
    astar_tree.elementName = state
    astar_tree.treeLevel = astar_tree_level
    astar_tree = astar_tree.add()

    # Add first element into the queue
    astar_queue.append(astar_tree)

    # Traverse all the elements of the queue
    while astar_queue:

        # Sort the element from the queue
        if len(astar_queue) > 1:
            astar_queue.sort(key=lambda x: sortByHeuristic(x))

        # Get the first node from the queue
        astar_child_object = astar_queue.pop(0)
        astar_child_state = astar_child_object.elementName

        # get all legal actions for the current node
        current_actions = astar_child_state.getLegalPacmanActions()

        if current_actions:

            # get all the successor state for these actions
            for action in current_actions:

                # Get the successor of the current node
                next_state = astar_child_state.generatePacmanSuccessor(action)

                if next_state:

                    # evaluate the successor states using scoreEvaluation heuristic
                    element_scored = [(admissibleHeuristic(next_state), action)]

                    # Increase the level for the child
                    parent_tree_level = astar_tree.goto(astar_child_state)
                    if parent_tree_level:
                        astar_tree_level = parent_tree_level.treeLevel + 1
                    else:
                        astar_tree_level += 1

                    # create tree for the finding the data
                    astar_tree.elementName = next_state
                    astar_tree.elementParent = astar_child_state
                    astar_tree.elementScore = element_scored
                    astar_tree.elementPath.append(astar_child_state)
                    astar_tree.treeLevel = astar_tree_level
                    astar_object = astar_tree.add()

                    # If the state exists then add that to the queue
                    astar_queue.append(astar_object)

                else:
                    # Update the value leaf into the queue
                    astar_leaf_state = astar_tree.goto(astar_child_state)
                    astar_leaf_queue.append(astar_leaf_state)

오브젝트에서 요소를 추가하거나 제거할 수 있지만 구조를 삽입할 수 있습니다.

언급URL : https://stackoverflow.com/questions/2358045/how-can-i-implement-a-tree-in-python